ar X iv : h ep - t h / 03 10 20 5 v 1 2 2 O ct 2 00 3 Coupled - cluster renormalization group

نویسنده

  • Niels R. Walet
چکیده

Abstract The coupled cluster method (CCM) is one of the most successful and universally applicable techniques in quantum many-body theory. The intrinsic nonlinear and non-perturbative nature of the method is considered to be one of its advantages. We present here a combination of CCM with the Wilsonian renormalization group which leads to a powerful framework for construction of effective Hamiltonian field theories. As a toy example we obtain the twoloop renormalized φ4 theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 03 10 24 8 v 1 2 7 O ct 2 00 3 Similarity renormalization group as a theory of effective particles ∗

The similarity renormalization group procedure formulated in terms of effective particles is briefly reviewed in a series of selected examples that range from the model matrix estimates of its numerical accuracy to issues of the Poincaré symmetry in constituent theories to derivation of the Schrödinger equation for quarkonia in QCD.

متن کامل

ar X iv : h ep - t h / 03 10 04 6 v 1 6 O ct 2 00 3 Boundary Action of N = 2 Super - Liouville Theory

We derive a boundary action of N = 2 super-Liouville theory which preserves both N = 2 supersymmetry and conformal symmetry by imposing explicitly T = T and G = G. The resulting boundary action shows a new duality symmetry.

متن کامل

ar X iv : h ep - p h / 03 10 36 3 v 1 3 1 O ct 2 00 3 On two weak CC ∆ production models

We perform a detail analysis of two models for neutrino π+ production via ∆++ excitation and conclude that Marteau model [1] althrough based on simplified dynamical assumptions leads to similar results as well established model based on modelling of nucleon-Delta transition current with several form-factors [2].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003